跳到主要内容

Maximum Likelihood Estimation

Bayesian Rule:

P(θD)=P(Dθ)P(θ)P(D)P(\theta|D)=\frac{P(D|\theta)P(\theta)}{P(D)}

P(Dθ)P(D \mid \theta) \Rightarrow Likelihood

P(θ)P(\theta) \Rightarrow prior

P(θD)P(\theta \mid D) \Rightarrow posterior

P(D)P(D) \Rightarrow marginal likelihood

Maximum Likelihood Estimation (MLE)

AKA:最大似然估计,likelihood AKA: 似然函数

P(Dθ)=xiDp(xiθ)P(D|\theta)=\prod\limits_{x_i \in D} p(x_i|\theta)

Apply log operation to avoid underflow

logP(Dθ)=xiDlog(p(xiθ))logP(D|\theta)=\sum\limits_{x_i \in D}log(p(x_i|\theta))

θ=arg MAX logP(Dθ)\theta=arg\space MAX\space logP(D|\theta)

For instance,if P(xθ)N(u,σ2)P(x \mid \theta) \sim N(u,\sigma^2)

u^=1DxiDxi\hat{u}=\frac{1}{|D|}\sum\limits_{x_i \in D} x_i

σ^2=1DxiD(xiu^)(xiu^)T\hat{\sigma}^2=\frac{1}{|D|}\sum\limits_{x_i \in D}(x_i-\hat{u})(x_i-\hat{u})^T