Maximum Likelihood Estimation
P(θ∣D)=P(D)P(D∣θ)P(θ)
P(D∣θ)⇒ Likelihood
P(θ)⇒ prior
P(θ∣D)⇒ posterior
P(D)⇒ marginal likelihood
AKA:最大似然估计,likelihood AKA: 似然函数
P(D∣θ)=xi∈D∏p(xi∣θ)
Apply log operation to avoid underflow
logP(D∣θ)=xi∈D∑log(p(xi∣θ))
θ=arg MAX logP(D∣θ)
For instance,if P(x∣θ)∼N(u,σ2)
u^=∣D∣1xi∈D∑xi
σ^2=∣D∣1xi∈D∑(xi−u^)(xi−u^)T